Dynamic Data MonitoringAn AI-engineered statistical package for monitoring clinical trial progress Cutting-Edge Technology for Drug DevelopmentThe CIMS Dynamic Data Monitoring engine utilizes machine learning and artificial intelligence (AI) technology in an integrated, closed system with EDC and IWRS.

With the CIMS DDM platform, you can dynamically monitor and optimize your clinical trials — overcoming the barriers of classical adaptive group sequential designs to dynamically monitor trials without using an Independent Statistical Group (ISG) and/or Independent Data Monitoring Committee (IDMC).

As new data is cumulated, the system will automatically compute the score function for chosen endpoints, confidence intervals and conditional power; update stopping boundaries; and perform simulations to predict the trend of a clinical trial.The CIMS Dynamic Data Monitoring system includes:

  • Electronic Data Capture (EDC) system for managing patient data for clinical trials
  • Interactive Web Response System (IWRS) for managing treatment assignment
  • DDM Engine for complex statistical and mathematical computations and simulations

The integration is essential to ensure that the use of treatment assignment for calculating efficacy score is within the closed system.

  • Compute treatment effect (point estimate and 95% CI) as trial progresses
  • Compute conditional power as trial progresses
  • Compute adaptive stopping boundaries dynamically
  • Perform sample size modifications
  • Assess futility for early termination

Dynamically Monitoring a Promising Clinical Trial

The video displays the estimated efficacy over patient accrual (or information time) with 95% CI, Conditional Power as well as the O’Brien-Fleming boundary. This trial could be early stopped at about 75% patient accrual due to efficacy.

Dynamically Monitoring a Hopeless Clinical Trial

The video displays the estimated efficacy over patient accrual (or information time) with 95% CI as well as the O’Brien-Fleming boundary. This trial could be early stopped at about 25% patient accrual due to futility.

DDM Made a Clinical Trial Eventually Success

The video displays a trial based on Adaptive Sequential Design with initial sample size of 100 per arm and interim looks at 30% and 75% of patient accrual. Sample size re-estimation was performed at 75% patient accrual. The re-estimated sample size was 227 per arm. Another two interim looks were planned at 120 and 180 patients. The trial crossed the updated boundary at 180. This trial could be short a little bit based on the initial design. The trial eventually became successful with the continuously monitoring and adaptation.

DDM Engine Use Cases

The CIMS Dynamic Data Monitoring engine can be also used for:

  1. Seamless phase 2/3 adaptive design
  2. Optimal dose selection
  3. Endpoint selection
  4. Population enrichment
  5. Real World Evidence (RWE) Monitoring
  6. Dynamic safety monitoring for pharmacovigilance
  7. Signal detection
  8. and more…

How to Implement

We offer variety of services and solutions for customers.

The Complete Suite


The suite consists of the CIMS EDC, IWRS and DDM engine. These three components are seamlessly integrated with internal I/O to each component.

Standalone DDM Engine

CIMS provides API version of DDM engine which can be integrated with any EDC/IWRS system through our proprietary blockchain technology.

Contact us for DDM API.

Professional Services

We also provide a broad range of statistical consultation:

  • Sample size estimation
  • Group Sequential Design
  • Dynamic Trial Design
  • Seamless phase 2/3 combination design
  • DDM planning, implementation and execution
  • Support IDMC with DDM
  • FDA/EMA interaction about DDM

Please contact us for a quick call.

This is the Dynamic Data Monitoring engine at work – the machine intelligence and AI.